RESTRICTIONS ON HILBERT COEFFICIENTS GIVE THE DEPTH OF A PRIME IDEAL INSIDE THE POLYNOMIAL RING

CHENG MENG

Abstract

In this paper, we prove that for a prime ideal P of dimension r inside a polynomial ring, if adjoining s general linear forms to the prime ideal changes the $r-s$-th Hilbert coefficient by 1 and doesn't change the 0th to $r-s-1$-th Hilbert coefficients where $s \leq r$, then the depth of S / P is $n-s-1$. This criteria also tells us about possible restrictions on the generic initial ideal of a prime ideal inside a polynomial ring.

1. Introduction

Let k be an infinite field. The famous Eisenbud-Goto conjecture claims that an inequality holds between several numerical invariants of a homogeneous prime P in a polynomial ring over k :

Conjecture 1.1 (4]). Let k be an algebraically closed field, $P \subset\left(x_{1}, \ldots, x_{n}\right)^{2}$ be a homogeneous ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\operatorname{reg}(P) \leq \operatorname{deg}(S / P)-\operatorname{ht}(P)+1
$$

Here $\operatorname{deg}(S / P)$ is the multiplicity of S / P. The conjecture is proved for many special cases including curves and smooth surfaces but it is false in general. The first counterexample is given by McCullough and Peeva in 9 using Rees-like algebras. It means that the regularity can be quite large in general even when the ring is a graded domain.

Let P be a homogeneous prime ideal of S and $<=<_{\text {rev }}$ be the graded reverse lexicographic order on S, then we can talk about the generic initial ideal gin ${ }_{<}(P)$ of P. The above conjecture involves several invariants of P including multiplicity, regularity and height, and they can all be described using generic initial ideal in a simple way. Let $J=\operatorname{gin}_{<}(P)$ and $G(J)$ be the set of monomial minimal generators of J. Then by Bayer and Stillman's theorem in [1 and Eliahou and Kervaire's theorem in [5], we know: $\operatorname{reg}(S / P)=\max \{\operatorname{deg}(u): u \in G(J)\}-1$, and $\operatorname{depth}(S / P)=n-\max \left\{i: x_{i} \mid u \in G(J)\right\}$ so a description of such generic initial ideal may lead to similar inequalities of these invariants. Therefore, it makes sense to study what are possible generic initial ideals of primes in a polynomial ring. Although we have a description on all the possible generic initial ideals (for instance, see [7]) of an ideal, there may be more strict restrictions on the generic initial ideal of a homogeneous prime ideal. This paper gives such a restriction and shows that certain monomial ideals are not the initial ideal of a homogeneous prime ideal. Moreover, we describe the restriction using Hilbert coefficients of the ring S / P which leads to S / P being almost Cohen-Macaulay.

[^0]
2. Preliminaires

Before we describe the restriction on generic initial ideals of prime ideals, we introduce some notations on polynomial rings, monomials and monomial orders. Let $S(n)=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring in n-variables, $\mathfrak{m}(n)$ be its homogeneous maximal ideal. If $n_{1}<n_{2}$, there is a natural embedding $\eta: S\left(n_{1}\right) \hookrightarrow S\left(n_{2}\right)$. If a linear form $l=c_{1} x_{1}+\ldots+c_{n} x_{n} \in S(n)_{1}$ satisfies $c_{n} \neq 0$, then the map $\eta^{\prime}: S(n-1) \xrightarrow{\eta} S(n) \rightarrow S(n) / l S(n)$ is an isomorphism. Denote the map $\pi_{l}: S(n) \rightarrow$ $S(n) / l S(n) \xrightarrow{\left(\eta^{\prime}\right)^{-1}} S(n-1)$. If $l=x_{n}$, we denote $\pi_{n}=\pi_{x_{n}}: S(n) \rightarrow S(n-1)$. For a sequence of linear forms l_{1}, \ldots, l_{s} we define the map iterately:

$$
\Pi_{l_{1}, \ldots, l_{s}}=\pi_{\overline{l_{s}}} \pi_{\overline{l_{s-1}}} \ldots \pi_{l_{1}}: S(n) \rightarrow S(n-s)
$$

where $\overline{l_{i}}$ is the image of l_{i} under $\Pi_{l_{1}, \ldots, l_{i-1}}$. This definition does not make sense for all sequences of linear forms; when it make sense, the x_{n}-coefficient of l_{1} is nonzero, the x_{n-1}-coefficient of $\overline{l_{2}}=\pi_{l_{1}}\left(l_{2}\right)$ is nonzero, and so on. The above conditions are finitely many conditions given by the nonvanishing of certain polynomials in terms of the coefficients of l_{1}, \ldots, l_{s}. So $\Pi_{l_{1}, \ldots, l_{s}}$ makes sense on a Zariski open set in the space of all s linear forms. In particular they make sense for s general linear forms. Besides, they also make sense when $s=n-d$ and $l_{1}=x_{n}, l_{2}=x_{n-1}, \ldots, l_{s}=$ x_{n-d+1}. In this case we define

$$
\Pi_{d}=\Pi_{x_{n}, \ldots, x_{n-d+1}}=\pi_{d+1} \pi_{d+2} \ldots \pi_{n}: S(n) \rightarrow S(d)
$$

for $1 \leq d \leq n-1$. We denote $\Pi_{n}=\operatorname{id}_{S(n)}$. If $I \subset S(n)$ is a homogeneous $S(n)$-ideal, define the saturation of I to be $I^{\text {sat }}=I: \mathfrak{m}(n)^{\infty}$.

We recall the definition of initial ideal and generic initial ideal taken from 6 and 7]. Let $<$ be a monomial order on $S(n)$. For $f \in S(n)$, we can write f as a k-linear combination of monomials, that is, $f=\sum_{u} a_{u} u, a_{u} \in k$. Define the initial of f with respect to $<$, denoted by in $<(f)$, to be the largest monomial u such that $a_{u} \neq 0$. The initial ideal of I is:

Definition 2.1. $\operatorname{in}_{<}(I)=(\operatorname{in}(f) \mid f \in I)$.
Now suppose k is an infinite field. Every linear map $\alpha \in G L_{n}(k)$ defines a linear automorphism of $S(n)$. The generic initial ideal of I is defined as follows:

Definition 2.2. There exist a Zariski open set U of $G L_{n}(k)$ such that for all $\alpha \in U$, $\mathrm{in}_{<}(\alpha(I))$ is independent of α. This common initial ideal is called the generic initial ideal of I, denoted by $\operatorname{gin}_{<}(I)$ or $\operatorname{gin}(I)$ if the order is clear.

Throughout this paper, we will use the graded reverse lexicographic order $<=<_{\text {rev }}$.
Definition 2.3. We say a monomial ideal J is of Borel type if for any $i<j$, a monomial $u \in J$ dividing x_{j}, then there is some integer s such that $x_{i}^{s} u / x_{j} \in J$.

Equivalently, this is saying $J:\left(x_{1}, \ldots, x_{i}\right)^{\infty}=J: x_{i}^{\infty}$ for any i.
Proposition 2.4. For any homogeneous ideal I, gin (I) is always of Borel type. Moreover, $\operatorname{dim}(S)-\operatorname{dim}(S / I)=d$ if and only if $\operatorname{gin}(I)$ contains pure powers of x_{1}, \ldots, x_{d} but not pure powers of x_{d+1}, \ldots, x_{n}.

We also recall the definition of Hilbert coefficients taken from 3. Let M be a finitely generated graded $S(n)$-module. The function $H_{M}: \mathbb{N} \rightarrow \mathbb{N}, H_{M}(n)=$ $\operatorname{dim}_{k}\left(M_{n}\right)$ is called the Hilbert function of M and the power series $h_{M}(t)=$
$\Sigma_{i \in \mathbb{N}} H_{M}(i) t^{i}$ is called the Hilbert series. It is well known that the Hilbert series is of the form $q_{M}(t) /(1-t)^{d}$ with $d=\operatorname{dim}(M), q_{M}(t)$ is a polynomial with integer coefficients satisfying $q_{M}(1) \neq 0$.
Definition 2.5. Let M be a finitely generated graded $S(n)$-module of dimension d with Hilbert series $q_{M}(t) /(1-t)^{d}$. Expand $q_{M}(t)$ as linear combinations of powers of $t-1$:

$$
q_{M}(t)=e_{0}+e_{1}(t-1)+e_{2}(t-1)^{2}+\ldots
$$

The coefficient e_{i} is called the i-th Hilbert coefficient of M.
Since $q_{M}(t)$ has integer coefficients, all the Hilbert coefficients are integers.

3. Generic initial ideal under projection and saturation

For a monomial $u=x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}}$, we denote $\phi_{i}(u)=u / x_{i}^{e_{i}}$, that is, we eliminate all x_{i} 's from the factors of u. Denote $\Phi_{d}(u)=\phi_{d+1} \phi_{d+2} \ldots \phi_{n}(u)$. If $J=\left(u_{1}, \ldots, u_{s}\right)$ is a monomial ideal in $S(n)$ with monomial minimal generator u_{1}, \ldots, u_{s}, We denote $\phi_{i}(J)=\left(\phi_{i}\left(u_{1}\right), \ldots, \phi_{i}\left(u_{s}\right)\right)=J: x_{i}{ }^{\infty}, \Phi_{d}(J)=$ $\left(\Phi_{d}\left(u_{1}\right), \ldots, \Phi_{d}\left(u_{s}\right)\right)=J:\left(x_{d+1} \ldots x_{n}\right)^{\infty}, \overline{\Phi_{d}}(J)=\pi_{d+1} \phi_{d+1} \pi_{d+2} \phi_{d+2} \ldots \pi_{n} \phi_{n}(J)$. Note that $\Phi_{d}(J)$ is an $S(n)$-ideal while $\overline{\Phi_{d}(J)}$ is an $S(d)$ ideal, and these two ideals are generated by the same set of monomials in $S(d)$.

Remark 3.1. If $i \neq j$, then $\pi_{i} \phi_{j}=\phi_{j} \pi_{i}$. To be precise, if J is generated by u_{1}, \ldots, u_{s}, then $\pi_{i} \phi_{j}(J)=\phi_{j} \pi_{i}(J)$ is generated by $\phi_{j}\left(u_{k}\right)$ where u_{k} is not divisible by x_{i}. Thus in the expression of $\overline{\Phi_{d}}(J)=\pi_{d+1} \phi_{d+1} \pi_{d+2} \phi_{d+2} \ldots \pi_{n} \phi_{n}(J)$, we can commute all ϕ 's and π 's if we only move π to the left. This implies $\overline{\Phi_{d}}(J)=$ $\pi_{d+1} \pi_{d+2} \ldots \pi_{n} \phi_{d+1} \phi_{d+2} \ldots \phi_{n}(J)=\Pi_{d} \Phi_{d}(J)$.

The following two properties shows that the generic initial ideal in reverse lexicographic order behaves well under the projection map and saturation:

Proposition 3.2 (6), Proposition 2.14). Let I be a homogeneous ideal in $S(n)$, l be a general linear form in $S(n)$. Then $\operatorname{gin}\left(\pi_{l}(I)\right)=\pi_{n}(\operatorname{gin}(I))$.

Remark 3.3. Here $\pi_{l}(I)$ is an ideal of $S(n-1)$ so the generic initial ideal is welldefined. $\pi_{n}(\operatorname{gin}(I))$ is also an ideal of $S(n-1)$, thus this equality makes sense because it compares two ideals in the same ring $S(n-1)$.

Proposition 3.4. $\operatorname{gin}\left(I^{s a t}\right)=\operatorname{gin}(I): x_{n}^{\infty}=\operatorname{gin}(I)^{\text {sat }}$.
Proof. The first equality is proved in [6], Proposition 2.21. The second statement is true because gin (I) is of Borel type.

Let I be a saturated homogeneous ideal in $S(n)$. Let l be a linear form such that the x_{n}-coefficient of l is nonzero. We call the ideal $\widetilde{\pi}_{l}(I)=\left(\pi_{l}(I)\right)^{\text {sat }}$ the section with one hyperplane. It is a saturated ideal in $S(n-1)$. If we have s linear forms l_{1}, \ldots, l_{s} such that $\Pi_{l_{1}, \ldots, l_{s}}$ is well-defined, then inductively we can define the ideal of section with s hyperplanes: the ideal of section with one hyperplane is $I_{1}=\widetilde{\pi_{l_{1}}}(I)$, it is an ideal in $S(n-1)$; let $\overline{l_{2}}$ be the image of l_{2} under $\pi_{l_{1}}$, so define the section with two hyperplanes $I_{2}=\pi_{\overline{l_{2}}}\left(I_{1}\right)^{\text {sat }}$, and inductively, with s hyperplanes is $I_{s}=\pi_{\overline{l_{s}}}\left(I_{s-1}\right)^{s a t}$. Let $d=n-s$, so I_{s} is an ideal in $S(d)$. In algebraic geometry, we can consider the algebraic set X of \mathbb{P}^{n-1} corresponding to I; the intersection of X with s hyperplanes defined by l_{1}, \ldots, l_{s} is X_{s}. Then
I_{s} will be the defining ideal of X_{s} inside the linear subvariety \mathbb{P}^{n-s-1} defined by l_{1}, \ldots, l_{s}. The coordinate ring of the linear subvariety is $S(n) /\left(l_{1}, \ldots, l_{s}\right)$ which can be identified with $S(n-s)=S(d)$.
Proposition 3.5. $\operatorname{gin}\left(I_{s}\right)=\widetilde{\pi_{d+1}} \widetilde{\pi_{d+2}} \ldots \widetilde{\pi_{n}}(\operatorname{gin}(I))$.
Proof. Apply proposition 3.2 and proposition 3.4 inductively.
Lemma 3.6. Let J be a monomial ideal of Borel type and $1 \leq d \leq n$. Then $\Pi_{d}(J)$, $\Phi_{d}(J)$ and $\overline{\Phi_{d}(J)}$ are all of Borel type.

Proof. Suppose $J=\left(u_{1}, \ldots, u_{s}\right)$, then $\Phi_{d}(J)=\left(\Phi_{d}\left(u_{1}\right), \ldots, \Phi_{d}\left(u_{s}\right)\right)$. Every minimal generator of $\Phi_{d}(J)$ is of the form $\Phi_{d}\left(u_{k}\right)$ for some k. Choose i such that $x_{i} \mid \Phi_{d}\left(u_{k}\right)$ and choose $j<i$. Then $i \leq d$ because $\Phi_{d}\left(u_{k}\right)$ is only divisible by a subset of $\left\{x_{1}, \ldots, x_{d}\right\}$. In this case $x_{i} \mid u_{k}$. Since J is of Borel type, there exist t such that $x_{j}{ }^{t} u_{k} / x_{i}$ is in J, so there is another minimal generator $u_{k^{\prime}}$ of J with $u_{k^{\prime}} \mid x_{j}{ }^{t} u_{k} / x_{i}$. Since $j<i \leq d, \Phi_{d}\left(u_{k^{\prime}}\right) \mid \Phi_{d}\left(x_{j}{ }^{t} u_{k} / x_{i}\right)=x_{j}{ }^{t} \Phi_{d}\left(u_{k}\right) / x_{i}$. This means that $\Phi_{d}(J)$ is still of Borel type. For Π_{d}, we have $\Pi_{d}(J)=\left(\Pi_{d}\left(u_{1}\right), \ldots, \Pi_{d}\left(u_{s}\right)\right)$, and the set of minimal generators of $\Pi_{d}(J)$ is just the set of $\Pi_{d}\left(u_{k}\right)=u_{k}$'s where $\Pi_{d}\left(u_{k}\right) \neq 0$. Choose i such that $x_{i} \mid \Pi_{d}\left(u_{k}\right)$ and choose $j<i$. Then $i \leq d$ because $\Pi_{d}\left(u_{k}\right) \neq 0$ is only divisible by a subset of $\left\{x_{1}, \ldots, x_{d}\right\}$. Then we can use the same argument as $\Phi_{d}(J)$ to prove $\Pi_{d}(J)$ is of Borel type. The last statement is true by the previous two statements because $\overline{\Phi_{d}}=\Pi_{d} \Phi_{d}$.

Proposition 3.7. Let J be a saturated monomial ideal of Borel type of $S(n)$. Then
(1) $\pi_{d+1} \widetilde{\pi_{d+2}} \ldots \widetilde{\pi_{n}}(J)=\pi_{d+1} \phi_{d+1} \ldots \pi_{n} \phi_{n}(J)=\overline{\Phi_{d}(J)}$.
(2) $\widetilde{\pi_{d+1}} \widetilde{\pi_{d+2}} \ldots \widetilde{\pi_{n}}(J)=\phi_{d} \pi_{d+1} \phi_{d+1} \ldots \pi_{n} \phi_{n}(J)=\phi_{d} \overline{\Phi_{d}(J)}$.

Proof. J is of Borel type and saturated, so $J=J^{\text {sat }}=J: x_{n}{ }^{\infty}=\phi_{n}(J)$ and $\pi_{n}(J)=\pi_{n} \phi_{n}(J)$, which means (1) is true for $d=n-1$ and (2) is true for $d=n$. It is obvious that (2) is true for d implies (1) for $d-1$, so by induction it suffices to show (1) for d implies (2) for d. By Lemma before we see $\overline{\Phi_{d}(J)}$ is of Borel type, so if (1) is true for d, then $\widetilde{\pi_{d+1}} \widetilde{\pi_{d+2}} \ldots \widetilde{\pi_{n}}(J)=\left(\pi_{d+1} \widetilde{\pi_{d+2}} \ldots \widetilde{\pi_{n}}(J)\right)^{\text {sat }}=$ $\left(\overline{\Phi_{d}(J)}\right)^{\text {sat }}=\phi_{d} \overline{\Phi_{d}(J)}$, so (2) is true for d and we are done.

4. The main theorem

This section describes restrictions on the generic initial ideal of a homogeneous prime inside $S(n)$.

Theorem 4.1. Let P be a homogeneous prime ideal in $S(n)$ and $J=\operatorname{in}(P)$ be the initial ideal of P. Assume J is of Borel type, and for some $1 \leq d \leq n-1$ we have $\overline{\Phi_{d}}(J)=\Pi_{d}(J)+u$ for some $u \in \Pi_{d}(J): \mathfrak{m}(d)$. Then:
(1) Either $u=1,\left(x_{1}, \ldots, x_{d}\right) \subset J$, or J is generated by $J \cap k\left[x_{1}, \ldots, x_{d}\right]$ and one extra generator v.
(2) If $u \neq 1$, then the extra generator $v=u x_{d+1}^{e}$ for some $e>0$.
(3) If $u \neq 1$, then J is generated by monomials inside $k\left[x_{1}, \ldots, x_{d+1}\right]$.

Proof. Let $f \in P$ such that $\operatorname{in}(f)$ is a minimal generator of J. We claim f is an irreducible polynomial. If f is not irreducible, write $f=f_{1} f_{2}, f_{1}, f_{2}$ are not constants. Then $\operatorname{in}(f)=\operatorname{in}\left(f_{1}\right) \operatorname{in}\left(f_{2}\right)$ with $\operatorname{in}(f) \neq \operatorname{in}\left(f_{1}\right)$ or in $\left(f_{2}\right)$. Since P is prime and $f \in P, f_{1} \in P$ or $f_{2} \in P$, which implies $\operatorname{in}\left(f_{1}\right) \in J$ or $\operatorname{in}\left(f_{2}\right) \in J$, which contradicts the minimality of in (f). Let $u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$ be the monomial
minimal generators of J with $u_{i} \in k\left[x_{1}, \ldots, x_{d}\right], v_{j} \notin k\left[x_{1}, \ldots, x_{d}\right]$. Since $\overline{\Phi_{d}}(J) \neq$ $\Pi_{d}(J)$, one of the generator does not lie in $k\left[x_{1}, \ldots, x_{d}\right]$, that is, $t \geq 1$ and there is at least one v_{1}. Then $\Phi_{d}\left(u_{i}\right)=u_{i}, \Phi_{d}\left(v_{j}\right) \neq v_{j} . \Phi_{d}(J)$ is generated by $\Phi_{d}\left(u_{i}\right)=u_{i}$ and $\Phi_{d}\left(v_{j}\right)$, and is minimally generated by $u_{i}, u . \overline{\Phi_{d}(J)}$ is also generated by u_{i}, u, viewed as a monomial ideal in $S(d)$. For any i, j, u_{i} does not divide v_{j}; but $\Phi_{d}\left(v_{j}\right)$ divides v_{j}, so u_{i} does not divide $\Phi_{d}\left(v_{j}\right)$. But $\Phi_{d}\left(v_{j}\right) \in \Phi_{d}(J)=\left(u_{1}, \ldots, u_{s}, u\right)$, so $\Phi_{d}\left(v_{j}\right) \in\left(u_{1}, \ldots, u_{s}, u\right) \backslash\left(u_{1}, \ldots, u_{s}\right)$; this forces $\Phi_{d}\left(v_{j}\right)=u$ because $u \in \Pi_{d}(J)$: $\mathfrak{m}(d)=\left(u_{1}, \ldots, u_{s}\right): \mathfrak{m}(d)$. Write $v_{j}=u w_{j}$ for $w_{j} \in k\left[x_{d+1}, \ldots, x_{n}\right]$. We have seen $t \geq 1$. If $t=1$ this is the second part of (1). Suppose $t \geq 2$, we claim the first part of (1) holds. Assume $v_{1}=u w_{1}, v_{2}=u w_{2}$ are two distinct monomials minimal generator of J. Take f_{1}, f_{2} to be the elements in the reduced Gröbner basis of P satisfying $\operatorname{in}\left(f_{1}\right)=v_{1}, \operatorname{in}\left(f_{2}\right)=v_{2}$. Every monomial appearing in f_{1}, f_{2} is not in J except their initials. By the claim at the beginning of the proof, f_{1}, f_{2} are irreducible. We can write $f_{1}=u p_{1}+q_{1}, f_{2}=u p_{2}+q_{2}$ such that $u p_{1}$ is the sum of all terms appearing in f_{1} divisible by u, and q_{1} is the sum of all other terms; similar for p_{2}, q_{2}. Then $\operatorname{in}\left(p_{1}\right)=w_{1}, \operatorname{in}\left(p_{2}\right)=w_{2}$. Besides, $u \in\left(u_{1}, \ldots, u_{s}\right):\left(x_{1}, \ldots, x_{d}\right)$, so any other monomial m appearing in q_{1} are not divisible by x_{1}, \ldots, x_{d}, otherwise the $m u$ divides some u_{i}, so it lies in J which is a contradiction. This means $p_{1} \in k\left[x_{d+1}, \ldots, x_{n}\right]$. Similarly $p_{2} \in k\left[x_{d+1}, \ldots, x_{n}\right]$. Consider the polynomial $F=p_{2} f_{1}-p_{1} f_{2}=p_{2} q_{1}-p_{1} q_{2}$. Take any term m_{1} of p_{2} and m_{2} of q_{1}. Then $m_{1} \in$ $k\left[x_{d+1}, \ldots, x_{n}\right]$. Also, m_{2} is not divisible by u_{i} since the terms of q_{1} appears in f_{1}, and is not divisible by u by construction of q_{1}. This means $m_{2} \notin\left(u_{1}, \ldots, u_{s}, u\right)=$ $\Phi_{d}(J)=J:\left(x_{d+1} \ldots x_{n}\right)^{\infty}$. So $m_{1} m_{2} \notin J$. This is true for any choice of $m_{1} m_{2}$. Similarly the product of any term of p_{1} and any term of q_{2} does not lie in J. So any possible term of F does not lie in $J=\operatorname{in}(P)$. But $F \in P$, so $F=0$ and $p_{2} f_{1}=p_{1} f_{2}$. Since f_{1} is irreducible we have $f_{1} \mid p_{1}$ or $f_{1} \mid f_{2}$. If $f_{1} \mid p_{1}$ then $\operatorname{in}(f)=v_{1}=u w_{1} \mid w_{1}=\operatorname{in}\left(p_{1}\right)$. This means f_{1} and p_{1} differ by a constant and $u=1 \in \Pi_{d}(J): \mathfrak{m}(d)$, so J contains $\left(x_{1}, \ldots, x_{d}\right)$, and the first part of (1) holds. Similarly if $f_{2} \mid p_{2}$, the first part of (1) also holds. If both of the above is false, then f_{1} and f_{2} differ by a constant, which means $v_{1}=\operatorname{in}\left(f_{1}\right)=\operatorname{in}\left(f_{2}\right)=v_{2}$, which is contradictory to $v_{1} \neq v_{2}$. Hence (1) is proved. Suppose (2) is false, and $v=u w \in J$ where w is not a pure power of x_{d+1}. Then $x_{j} \mid w$ for some $j>d+1$. Since J is of Borel type, there exist $e>0$ such that $v^{\prime}=u w x_{d+1}^{e} / x_{j} \in J$. Pick a monomial minimal generator v " dividing u^{\prime}. v " does not divide v by minimality and v does not divies v " by construction. Then $v=u w, v "=u w ", w, w " \in k\left[x_{d+1}, \ldots, x_{n}\right]$, and w, w " does not divide each other, which is contradictory to the second part of (1). (3) is a corollary of (1) and (2).

Corollary 4.2. Let P be a homogeneous prime ideal in $S(n)$ and $J=\operatorname{gin}(P)$ be the initial ideal of P. Assume for some $1 \leq d \leq n-1$ we have $\overline{\Phi_{d}}(J)=\Pi_{d}(J)+u$ for some $u \in \Pi_{d}(J): \mathfrak{m}(d)$. Then:
(1) Either $u=1,\left(x_{1}, \ldots, x_{d}\right) \subset J$, or J is generated by $J \cap k\left[x_{1}, \ldots, x_{d}\right]$ and one extra generator v.
(2) If $u \neq 1$, then the extra generator $v=u x_{d+1}^{e}$ for some $e>0$.
(3) If $u \neq 1$, then J is generated by monomials inside $k\left[x_{1}, \ldots, x_{d+1}\right]$.

Proof. The generic initial ideal of any ideal is always of Borel type. By definition of the generic initial ideal, $J=\operatorname{in}(\alpha(P))$ for some $\alpha \in G L_{n}(k)$ and $\alpha(P)$ is still a prime ideal in $S(n)$, so the conclusion follows from theorem 4.1.

Example 4.3. The above theorem and corollary rule out some monomial ideal as the initial ideal of a prime ideal. For example, let $J=\left(x_{1}^{2}, x_{1} x_{2}^{2}, x_{1} x_{2} x_{3}, x_{1} x_{3}^{2}\right) \subset$ $k\left[x_{1}, \ldots, x_{n}\right]$. Then J is of Borel type. Let $d=1$, we see $\Phi_{d}(J)=\left(x_{1}\right), \Pi_{d}(J)=$ $\left(x_{1}^{2}\right)$, and $x_{1} \subset\left(x_{1}^{2}\right):\left(x_{1}\right)$. However, $x_{1} \neq 1$ and J has a minimal generator dividing x_{3}. So J satisfies the condition of theorem 4.1 except that it is the initial ideal of P, and it violates the conclusion of (1), so it can not be the initial ideal or generic initial ideal of any prime ideal.

The above result can be strengthened by replacing J with a larger ideal $\Phi_{d+2}(J)$ using Bertini's irreducibility theorem. First we recall the statement of the theorem:
Theorem 4.4 (8). Let k be an infinite field, P a homogeneous prime ideal in the polynomial ring S, s be a positive integer, $s \leq \operatorname{dim}(S / P)-2$. Then for s general linear forms $l_{1}, \ldots, l_{s}, \widetilde{\pi_{l_{s}}} \widetilde{\pi_{l_{s-1}}} \ldots \widetilde{\pi_{l_{1}}}(P)$ is still a prime ideal in $S /\left(l_{1}, \ldots, l_{s}\right)$.
Corollary 4.5. Let P be a homogeneous prime ideal in $S(n)$ and $J=\operatorname{gin}(P)$. Assume for some $1 \leq d \leq n-2$ we have $\operatorname{dim}(S / P) \geq n-d$ and $\overline{\Phi_{d}}(J)=\Pi_{d} \Phi_{d+2}(J)+u$ for some $u \in \Pi_{d} \Phi_{d+2}(J): \mathfrak{m}$. Then:
(1) J is generated by $J \cap k\left[x_{1}, \ldots, x_{d}\right]$ and one extra generator v.
(2) $v=u x_{d+1}^{e}$ for some $v \in \Pi_{d}(J): \mathfrak{m}$ and $e>0$.
(3) J is generated by monomials inside $k\left[x_{1}, \ldots, x_{d+1}\right]$.
(4) $\operatorname{depth}(S / P)=n-d-1$. If moreover $\operatorname{dim}(S / P)=n-d$ then S / P is almost Cohen-Macaulay.
Proof. If $n=d+2$ this is just corollary 4.2, so we may assume $n \geq d+3$. We choose $s=n-d-3$ general linear forms l_{1}, \ldots, l_{s} and let $P_{s}=\widetilde{\pi_{l_{s}}} \widetilde{\pi_{l_{s-1}}} \ldots \widetilde{\pi_{l_{1}}}(P)$. If $n=d+3$ just choose $P_{s}=P$. It is a prime ideal in $S(n) /\left(l_{1}, \ldots, l_{s}\right)=$ $S(d+3)$ because $s=n-d-3<\operatorname{dim}(S / P)-2$. By proposition $3.7 \operatorname{gin}\left(P_{s}\right)=$ $\phi_{d+3} \overline{\Phi_{d+3}(J)}=\Pi_{d+3} \Phi_{d+2}(J)$. By Bertini's irreducibility theorem P_{s} is a prime ideal, so $\operatorname{gin}\left(P_{s}\right)=\Pi_{d+3} \Phi_{d+2}(J)$ satisfies the conclusion of (1)-(3), that is, it is generated by monomials in x_{1}, \ldots, x_{d} plus an extra generator $v=u x_{d+1}^{e}$ where u is a monomial in x_{1}, \ldots, x_{d}. Since the generator of $\Phi_{d+2}(J)$ does not involve x_{d+2}, \ldots, x_{n}, the generators of $\Pi_{d+3} \Phi_{d+2}(J) \subset S(d+3)$ and $\Phi_{d+2}(J) \subset S(n)$ are the same, and $\Phi_{d+2}(J)$ also satisfies (1)-(3) because these properties only depends on monomial generators. Now we claim J also satisfies (1)-(3). If $\Phi_{d+2}(J)$ satisfies (1)-(3) but J does not, then $\Phi_{d+2}(J) \neq J$; hence J has a minimal generator $v=w_{1} w_{2}$ where $w_{1} \in k\left[x_{1}, \ldots, x_{d+1}\right], w_{2} \in k\left[x_{d+2}, \ldots, x_{n}\right]$, and $w_{2} \neq 1$. Since J is of Borel type,there exists $e>0$ such that $w_{1} x_{d+2}^{e} \in J$, and since $w_{1} x_{d+2}^{e}$ does not involve $x_{d+3}, \ldots, x_{n}, \Phi_{d+2}\left(w_{1} x_{d+2}^{e}\right)=w_{1} x_{d+2}^{e} \in \Phi_{d+2}(J)$. This monomial is divisible by another minimal generator v^{\prime} of $\Phi_{d+2}(J)$; write $v^{\prime}=w_{1}^{\prime} w_{2}^{\prime}$ where $w_{1}^{\prime} \in k\left[x_{1}, \ldots, x_{d+1}\right], w_{2}^{\prime}$ is a power of x_{d+2} which is not 1 . This means $\Phi_{d+2}(J)$ has a minimal generator involving x_{d+2} which is contradictory to (3), so we are done.

5. Difference in the Hilbert coefficients

The previous section talks about restrictions on $\operatorname{gin}(P)$ for a prime ideal P. However, the generic initial ideal of an ideal is hard to capture in practice as its computation requires the information of some unknown $\alpha \in G L_{n}(k)$. It would be easier to describe the restriction using Hilbert coefficients which is totally computable from the Hilbert function of the quotient ring. We want to see how the Hilbert coefficients change after going modulo s general linear forms.

Lemma 5.1. Let M, N be two graded modules over some polynomial ring S of dimension r. Assume there is an exact sequence

$$
0 \rightarrow M_{1} \rightarrow N \rightarrow M \rightarrow M_{2} \rightarrow 0
$$

Denote $\operatorname{dim} M_{1}=r_{1}, \operatorname{dim} M_{2}=r_{2}, s=\max \left\{r_{1}, r_{2}\right\}$. Then:
(1) $r \geq s$.
(2) $e_{i}(N)=e_{i}(M)$ for $i<r-s$.
(3) If $r_{1}=s>r_{2}$, then $e_{r-s}(N)=e_{r-s}(M)+(-1)^{r-s} e_{0}\left(M_{1}\right)$.
(4) If $r_{1}<s=r_{2}$, then $e_{r-s}(N)=e_{r-s}(M)-(-1)^{r-s} e_{0}\left(M_{2}\right)$.
(5) If $r_{1}=s=r_{2}$, then $e_{r-s}(N)=e_{r-s}(M)+(-1)^{r-s} e_{0}\left(M_{1}\right)-(-1)^{r-s} e_{0}\left(M_{2}\right)$.

Proof. We have $\operatorname{dim} M \geq \operatorname{dim} M_{1}$ and $\operatorname{dim} N \geq \operatorname{dim} M_{2}$ which implies (1). For the rest statements, note that the Hilbert series is additive on short exact sequences, so $h_{M}(t)=h_{N}(t)+h_{M_{2}}(t)-h_{M_{1}}(t)$. Let $h_{M}(t)=q_{M}(t) /(1-t)^{r}, h_{M_{1}}(t)=q_{M_{1}}(t) /(1-$ $t)^{r_{1}}, h_{M_{2}}(t)=q_{M_{2}}(t) /(1-t)^{r_{2}}$. Then $h_{N}(t)=q_{N}(t) /(1-t)^{r}$ where $q_{N}(t)=q_{M}(t)+$ $q_{M_{2}}(t)(1-t)^{r-r_{2}}-q_{M_{1}}(t)(1-t)^{r-r_{1}}$. Now we expand both sides in terms of powers of $t-1$ and look at the coefficients of $1,(t-1), \ldots,(t-1)^{r-s}$.

Now let J be a monomial ideal of Borel type in $S=S(n), \operatorname{dim}(S / J)=r$, and d is an integer satisfying $d \geq n-r$. Let J_{1} be the ideal generated by $J \cap k\left[x_{1}, \ldots, x_{d}\right]$ and $J_{2}=\Phi_{d}(J)$. Then $J_{1} \subset J \subset J_{2}$ with $\Pi_{d}\left(J_{1}\right)=\Pi_{d}(J)$.

Lemma 5.2. We have:
(1) $e_{i}(S / J)=e_{i}\left(S / J_{2}\right)$ for $0 \leq i \leq r-n+d$;
(2) $e_{i}(S / J)=e_{i}\left(S / J_{1}\right)$ for $0 \leq i \leq r-n+d-1$, and

$$
\begin{array}{r}
e_{r-n+d}(S / J)-e_{r-n+d}\left(S / J_{1}\right) \\
=(-1)^{r-n+d} \operatorname{rank}_{k\left[x_{d+1}, \ldots, x_{n}\right]}\left(J_{2} / J_{1}\right) \\
=(-1)^{r-n+d} \operatorname{dim}_{k} \Pi_{d}\left(J_{2}\right) / \Pi_{d}\left(J_{1}\right)
\end{array}
$$

which is finite.
Proof. For any $1 \leq i \leq n-1, \Phi_{i+1}(J) \subset \Phi_{i}(J)=\Phi_{i+1}(J): x_{i+1}^{\infty}$. For any monomial $u \in \Phi_{i}(J) \backslash \Phi_{i+1}(J)$, by definition there is some $e>0$ such that $u x_{i+1}^{e} \in \Phi_{i+1}(J)$. Since J is of Borel type, so is $\Phi_{i+1}(J)$, so for any $j \leq i$, there exist some $e^{\prime}>0$ such that $u x_{j}^{e^{\prime}} \in \Phi_{i+1}(J)$. This means $\Phi_{i}(J) / \Phi_{i+1}(J)$ is annihilated by some power of $\left(x_{1}, \ldots, x_{i+1}\right)$, so $\operatorname{dim}\left(\Phi_{i}(J) / \Phi_{i+1}(J)\right) \leq n-i-1$. Now consider the exact sequence

$$
0 \rightarrow \Phi_{i}(J) / \Phi_{i+1}(J) \rightarrow S(n) / \Phi_{i+1}(J) \rightarrow S(n) / \Phi_{i}(J) \rightarrow 0
$$

By the argument above and lemma 5.1. we know $e_{j}\left(S / \Phi_{i}(J)\right)=e_{j}\left(S / \Phi_{i+1}(J)\right)$ for $j<r-(n-i-1)=r-n+i+1$, so $e_{j}(S / J)=e_{j}\left(S / \Phi_{d}(J)\right)$ for $j \leq r-n+d$. For J_{1}, by the arguement above it suffices to prove the equality if we replace J by J_{2}. We know S / J_{1} and S / J_{2} are both free $k\left[x_{d+1}, \ldots, x_{n}\right]$-module since J_{1} and J_{2} are generated by monomials in x_{1}, \ldots, x_{d}. Now for any monomial minimal generator u of J_{2} satisfying $u \notin J_{1}$, we know $u \in k\left[x_{1}, \ldots, x_{d}\right]$ and there exists $s>0$ such that $x_{d+1}^{s} u \in J$. So $x_{i}^{s} u \in J$ for all $1 \leq i \leq d$. By definition of $J_{1}, x_{i}^{n} u \in J_{1}$ for such i. This means that $J_{2} \subset J_{1}:\left(x_{1}, \ldots, x_{d}\right)^{\infty}$. So J_{2} / J_{1} is a free $S(d)$-module of finite rank. It has dimension exactly d and $e_{0}\left(J_{2} / J_{1}\right)=\operatorname{rank}_{S(d)}\left(J_{2} / J_{1}\right)=$ $\operatorname{dim}_{k}\left(\Pi_{d}\left(J_{2}\right) / \Pi_{d}\left(J_{1}\right)\right)$. So apply lemma 5.1 to the exact sequence $0 \rightarrow J_{2} / J_{1} \rightarrow$ $S / J_{1} \rightarrow S / J_{2} \rightarrow 0$ we know $e_{i}\left(S / J_{2}\right)=e_{i}\left(S / J_{1}\right)$ for $0 \leq i \leq r-(n-d)-1$ and $e_{r-n+d}\left(S / J_{2}\right)=e_{r-n+d}\left(S / J_{1}\right)+(-1)^{r-n+d} e_{0}\left(J_{2} / J_{1}\right)$.

Lemma 5.3. Let J be a monomial ideal of Borel type in $S(n)$ with $\operatorname{dim}(S / J) \geq$ $n-d$. Then $\overline{\Phi_{d}}(J)=\Pi_{d}(J)+u$ for some $u \in \Pi_{d}(J): \mathfrak{m}(d)$ if and only if

$$
\operatorname{rank}_{k\left[x_{d+1}, \ldots, x_{n}\right]}\left(J_{2} / J_{1}\right)=\operatorname{dim}_{k}\left(\Pi_{d}\left(J_{2}\right) / \Pi_{d}\left(J_{1}\right)\right)=1
$$

Proof. Since J_{2} and J_{1} are both free $k\left[x_{d+1}, \ldots, x_{n}\right]$-modules, their quotient is a free $k\left[x_{d+1}, \ldots, x_{n}\right]$-module of rank 1 if and only if after modulo $\left(x_{d+1}, \ldots, x_{n}\right)$ the quotient is a one dimensional k-vector space, if and only if $\overline{\Phi_{d}}(J) / \Pi_{d}(J)=k$.

Theorem 5.4. Let P be a homogeneous prime ideal in $S(n)$, $\operatorname{dim} S(n) / P=r$. Take $1 \leq s \leq r$, and let $d=n-s$. choose s general linear forms l_{1}, \ldots, l_{s}. Denote $P_{1}=\pi_{l_{1}} \ldots \pi_{l_{s}}(P) \subset S(d)$. Suppose $e_{i}(S / P)=e_{i}\left(S / P_{1}\right)$ for $1 \leq i \leq r-s-1$ and $e_{r-s}(S / P)=e_{r-s}\left(S / P_{1}\right)+(-1)^{r-s}$, then $\operatorname{depth}(S / P)=n-d-1$.
Proof. Let $J=\operatorname{gin}(P)$. Denote J_{1}, J_{2} as before. Then $J_{1}=\operatorname{gin}\left(P_{1}\right)$ by proposition 3.5. Now taking generic initial ideal does not change the Hilbert series, so the Hilbert coefficients are the same, so we have $e_{i}(S / J)=e_{i}\left(S / J_{1}\right)$ for $1 \leq i \leq r-s-1$ and $e_{r-s}(S / J)=e_{r-s}\left(S / J_{1}\right)+(-1)^{r-s}$. Since $s=n-d$, by lemma 5.3 we know $\overline{\Phi_{d}}(J)=\Pi_{d}(J)+u$ for some $u \in \Pi_{d}(J): \mathfrak{m}(d)$. Now by theorem 4.1 we know $\operatorname{depth}(S / P)=n-d-1$.

6. Simple cases and case where $n-d=\operatorname{dim}(S / P)$

We can also talk about the generic initial ideal of a prime ideal when this prime is very simple.
Proposition 6.1. Let $n \geq 3$ and J be a monomial ideal in $S(n)$. Then there exists a prime ideal P of S such that $J=\operatorname{gin}(P)$ for some height 1 prime if and only if $J=x_{1}^{e}$ for some $e>0$.
Proof. Since $S(n)$ is a UFD, a height 1 prime is just a principle ideal generated by an irreducible ideal f. Now for general linear change of coordinate $\alpha, \operatorname{in}(\alpha f)=$ $x_{1}^{\operatorname{deg}(f)}$. Conversely for any degree d, we have a polynomial $x_{1}^{d}-x_{2}^{d-1} x_{3}$. Apply the Eisenstein criterion for the ideal $\left(x_{3}\right)$ we know it is irreducible, and its generic initial monomial is just x_{1}^{d}.

Corollary 6.2. Let $J=\operatorname{gin}(P)$. Suppose $\operatorname{ht}(J)=1$, then $J=x_{1}^{e}$ for some $e>0$.
Proof. $\operatorname{dim}(S / P)=\operatorname{dim}(S / J)=n-1$. So $\operatorname{ht}(P)=1$ because $S(n)$ is catenary and P is a prime. The rest follows by proposition 6.1.

If we assume $\operatorname{dim}(S / P)=n-d$ in the previous theorems we will get some interesting results. In this case we have the following property:

Proposition 6.3. Let $\operatorname{dim}(S / P)=n-d$, $J=\operatorname{gin}(P)$, then:
(1) $x_{1}, \ldots, x_{d} \in \sqrt{J}$ and $x_{d+1}, \ldots, x_{n} \notin \sqrt{J}$.
(2) $R=k\left[x_{d+1}, \ldots, x_{n}\right]$ is a Noether normalization of S / P and S / J.
(3) $S / \Phi_{d}(J)$ is free over R and $\Phi_{d}(J) / J$ is R-torsion.
(4) $\operatorname{deg}(S / P)=\operatorname{deg}(S / J)=\operatorname{rank}_{R}(S / J)=\operatorname{rank}_{R}\left(S / \Phi_{d}(J)\right)=\operatorname{dim}_{k}\left(S / \Phi_{d}(J)+\right.$ $\left.\left(x_{d+1}, x_{d+2}, \ldots, x_{n}\right)\right)$.
Now in this case, $r-n+d=0$, so by lemma 5.2 and lemma $5.3, \overline{\Phi_{d}}(J)=\Pi_{d}(J)+u$ if and only if $\operatorname{deg}\left(S / \Phi_{d}(J)\right)+1=\operatorname{deg}\left(S(d) / \Pi_{d}(J)\right)$. We can say in this case we have exactly one more degree after applying Φ_{d}. So by theorem 4.1 we have:

Theorem 6.4. Let P be a prime ideal in $S=S(n)$, $\operatorname{dim}(S / P)=n-d, J=\operatorname{gin}(P)$, and J satisfies $\operatorname{deg}\left(S / \Phi_{d}(J)\right)+1=\operatorname{deg}\left(S(d) / \Pi_{d}(J)\right)$. Then J is generated by monomials in $k\left[x_{1}, \ldots, x_{d+1}\right]$ and x_{d+1} appears in the minimal generator of J. Moreover, depth $(S / P)=n-d-1$ and S / P is almost Cohen-Macaulay.
Remark 6.5. This is a generalization of a lemma in Kwak's paper [2], Theorem 5.1 where we have $S(d) / \Pi_{d}(J)=S(d) / \mathfrak{m}(d)^{r+1}$. Here r is the reduction number of S / P.

References

[1] David Bayer and Michael Stillman. A criterion for detecting m-regularity. Inventiones mathematicae, 87(1):1-11, 1987.
[2] Đoàn Cuong and Sijong Kwak. The reduction number and degree bound of projective subschemes. Transactions of the American Mathematical Society, 373(2):1153-1180, 2020.
[3] David Eisenbud. Commutative algebra: with a view toward algebraic geometry, volume 150. Springer Science \& Business Media, 2013.
[4] David Eisenbud and Shiro Goto. Linear free resolutions and minimal multiplicity. Journal of Algebra, 88(1):89-133, 1984.
[5] Shalom Eliahou and Michel Kervaire. Minimal resolutions of some monomial ideals. Journal of Algebra, 129(1):1-25, 1990.
[6] Juan Elias, JM Giral, Rosa M Miró-Roig, and Santiago Zarzuela. Six lectures on commutative algebra, volume 166. Springer Science \& Business Media, 1998.
[7] Jürgen Herzog, Takayuki Hibi, Jürgen Herzog, and Takayuki Hibi. Monomial ideals. Springer, 2011.
[8] Jean-Pierre Jouanolou. Théoremes de bertini et applications. (No Title), 1983.
[9] Jason McCullough and Irena Peeva. Counterexamples to the eisenbud-goto regularity conjecture. Journal of the American Mathematical Society, 31(2):473-496, 2018.

[^0]: Date: November 20, 2023.

