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Abstract. In this paper, we prove that for a prime ideal P of dimension r
inside a polynomial ring, if adjoining s general linear forms to the prime ideal

changes the r − s-th Hilbert coefficient by 1 and doesn’t change the 0th to

r−s−1-th Hilbert coefficients where s ≤ r, then the depth of S/P is n−s−1.
This criteria also tells us about possible restrictions on the generic initial ideal

of a prime ideal inside a polynomial ring.

1. Introduction

Let k be an infinite field. The famous Eisenbud-Goto conjecture claims that an
inequality holds between several numerical invariants of a homogeneous prime P in
a polynomial ring over k:

Conjecture 1.1 ([4]). Let k be an algebraically closed field, P ⊂ (x1, . . . , xn)
2 be

a homogeneous ideal in S = k[x1, . . . , xn], then

reg(P ) ≤ deg(S/P )− ht(P ) + 1

Here deg(S/P ) is the multiplicity of S/P . The conjecture is proved for many
special cases including curves and smooth surfaces but it is false in general. The first
counterexample is given by McCullough and Peeva in [9] using Rees-like algebras.
It means that the regularity can be quite large in general even when the ring is a
graded domain.

Let P be a homogeneous prime ideal of S and <=<rev be the graded reverse
lexicographic order on S, then we can talk about the generic initial ideal gin<(P )
of P . The above conjecture involves several invariants of P including multiplicity,
regularity and height, and they can all be described using generic initial ideal
in a simple way. Let J = gin<(P ) and G(J) be the set of monomial minimal
generators of J . Then by Bayer and Stillman’s theorem in [1] and Eliahou and
Kervaire’s theorem in [5], we know: reg(S/P ) = max{deg(u) : u ∈ G(J)} − 1,
and depth(S/P ) = n − max{i : xi|u ∈ G(J)} so a description of such generic
initial ideal may lead to similar inequalities of these invariants. Therefore, it makes
sense to study what are possible generic initial ideals of primes in a polynomial
ring. Although we have a description on all the possible generic initial ideals (for
instance, see [7]) of an ideal, there may be more strict restrictions on the generic
initial ideal of a homogeneous prime ideal. This paper gives such a restriction and
shows that certain monomial ideals are not the initial ideal of a homogeneous prime
ideal. Moreover, we describe the restriction using Hilbert coefficients of the ring
S/P which leads to S/P being almost Cohen-Macaulay.
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2. Preliminaires

Before we describe the restriction on generic initial ideals of prime ideals, we
introduce some notations on polynomial rings, monomials and monomial orders.
Let S(n) = k[x1, . . . , xn] be a polynomial ring in n-variables, m(n) be its homoge-
neous maximal ideal. If n1 < n2, there is a natural embedding η : S(n1) ↪→ S(n2).
If a linear form l = c1x1 + . . . + cnxn ∈ S(n)1 satisfies cn ̸= 0, then the map

η′ : S(n−1)
η−→ S(n) → S(n)/lS(n) is an isomorphism. Denote the map πl : S(n) →

S(n)/lS(n)
(η′)−1

−−−−→ S(n− 1). If l = xn, we denote πn = πxn
: S(n) → S(n− 1). For

a sequence of linear forms l1, . . . , ls we define the map iterately:

Πl1,...,ls = πls
πls−1

. . . πl1 : S(n) → S(n− s)

where li is the image of li under Πl1,...,li−1 . This definition does not make sense for
all sequences of linear forms; when it make sense, the xn-coefficient of l1 is nonzero,
the xn−1-coefficient of l̄2 = πl1(l2) is nonzero, and so on. The above conditions are
finitely many conditions given by the nonvanishing of certain polynomials in terms
of the coefficients of l1, . . . , ls. So Πl1,...,ls makes sense on a Zariski open set in the
space of all s linear forms. In particular they make sense for s general linear forms.
Besides, they also make sense when s = n − d and l1 = xn, l2 = xn−1, . . . , ls =
xn−d+1. In this case we define

Πd = Πxn,...,xn−d+1
= πd+1πd+2 . . . πn : S(n) → S(d)

for 1 ≤ d ≤ n−1. We denote Πn = idS(n). If I ⊂ S(n) is a homogeneous S(n)-ideal,
define the saturation of I to be Isat = I : m(n)∞.

We recall the definition of initial ideal and generic initial ideal taken from [6]
and [7]. Let < be a monomial order on S(n). For f ∈ S(n), we can write f as a
k-linear combination of monomials, that is, f =

∑
u auu, au ∈ k. Define the initial

of f with respect to <, denoted by in<(f), to be the largest monomial u such that
au ̸= 0. The initial ideal of I is:

Definition 2.1. in<(I) = (in(f)|f ∈ I).

Now suppose k is an infinite field. Every linear map α ∈ GLn(k) defines a linear
automorphism of S(n). The generic initial ideal of I is defined as follows:

Definition 2.2. There exist a Zariski open set U of GLn(k) such that for all α ∈ U ,
in<(α(I)) is independent of α. This common initial ideal is called the generic initial
ideal of I, denoted by gin<(I) or gin(I) if the order is clear.

Throughout this paper, we will use the graded reverse lexicographic order<=<rev.

Definition 2.3. We say a monomial ideal J is of Borel type if for any i < j, a
monomial u ∈ J dividing xj , then there is some integer s such that xs

iu/xj ∈ J .

Equivalently, this is saying J : (x1, . . . , xi)
∞ = J : x∞

i for any i.

Proposition 2.4. For any homogeneous ideal I, gin(I) is always of Borel type.
Moreover, dim(S) − dim(S/I) = d if and only if gin(I) contains pure powers of
x1, . . . , xd but not pure powers of xd+1, . . . , xn.

We also recall the definition of Hilbert coefficients taken from [3]. Let M be
a finitely generated graded S(n)-module. The function HM : N → N, HM (n) =
dimk(Mn) is called the Hilbert function of M and the power series hM (t) =
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Σi∈NHM (i)ti is called the Hilbert series. It is well known that the Hilbert se-
ries is of the form qM (t)/(1 − t)d with d = dim(M), qM (t) is a polynomial with
integer coefficients satisfying qM (1) ̸= 0.

Definition 2.5. Let M be a finitely generated graded S(n)-module of dimension d
with Hilbert series qM (t)/(1− t)d. Expand qM (t) as linear combinations of powers
of t− 1 :

qM (t) = e0 + e1(t− 1) + e2(t− 1)2 + . . .

The coefficient ei is called the i-th Hilbert coefficient of M .

Since qM (t) has integer coefficients, all the Hilbert coefficients are integers.

3. Generic initial ideal under projection and saturation

For a monomial u = xe1
1 xe2

2 . . . xen
n , we denote ϕi(u) = u/xei

i , that is, we
eliminate all xi’s from the factors of u. Denote Φd(u) = ϕd+1ϕd+2 . . . ϕn(u).
If J = (u1, . . . , us) is a monomial ideal in S(n) with monomial minimal gen-
erator u1, . . . , us, We denote ϕi(J) = (ϕi(u1), . . . , ϕi(us)) = J : xi

∞, Φd(J) =
(Φd(u1), . . . ,Φd(us)) = J : (xd+1 . . . xn)

∞, Φd(J) = πd+1ϕd+1πd+2ϕd+2 . . . πnϕn(J).

Note that Φd(J) is an S(n)-ideal while Φd(J) is an S(d) ideal, and these two ideals
are generated by the same set of monomials in S(d).

Remark 3.1. If i ̸= j, then πiϕj = ϕjπi. To be precise, if J is generated by
u1, . . . , us, then πiϕj(J) = ϕjπi(J) is generated by ϕj(uk) where uk is not divisible

by xi. Thus in the expression of Φd(J) = πd+1ϕd+1πd+2ϕd+2 . . . πnϕn(J), we can
commute all ϕ’s and π’s if we only move π to the left. This implies Φd(J) =
πd+1πd+2 . . . πnϕd+1ϕd+2 . . . ϕn(J) = ΠdΦd(J).

The following two properties shows that the generic initial ideal in reverse lexi-
cographic order behaves well under the projection map and saturation:

Proposition 3.2 ([6], Proposition 2.14). Let I be a homogeneous ideal in S(n), l
be a general linear form in S(n). Then gin(πl(I)) = πn(gin(I)).

Remark 3.3. Here πl(I) is an ideal of S(n − 1) so the generic initial ideal is well-
defined. πn(gin(I)) is also an ideal of S(n − 1), thus this equality makes sense
because it compares two ideals in the same ring S(n− 1).

Proposition 3.4. gin(Isat) = gin(I) : x∞
n = gin(I)sat.

Proof. The first equality is proved in [6], Proposition 2.21. The second statement
is true because gin(I) is of Borel type. □

Let I be a saturated homogeneous ideal in S(n). Let l be a linear form such
that the xn-coefficient of l is nonzero. We call the ideal π̃l(I) = (πl(I))

sat the
section with one hyperplane. It is a saturated ideal in S(n− 1). If we have s linear
forms l1, . . . , ls such that Πl1,...,ls is well-defined, then inductively we can define
the ideal of section with s hyperplanes: the ideal of section with one hyperplane
is I1 = π̃l1(I), it is an ideal in S(n − 1); let l2 be the image of l2 under πl1 , so
define the section with two hyperplanes I2 = πl2

(I1)
sat, and inductively, with s

hyperplanes is Is = πls
(Is−1)

sat. Let d = n − s, so Is is an ideal in S(d). In

algebraic geometry, we can consider the algebraic set X of Pn−1 corresponding
to I; the intersection of X with s hyperplanes defined by l1, . . . , ls is Xs. Then
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Is will be the defining ideal of Xs inside the linear subvariety Pn−s−1 defined by
l1, . . . , ls. The coordinate ring of the linear subvariety is S(n)/(l1, . . . , ls) which can
be identified with S(n− s) = S(d).

Proposition 3.5. gin(Is) = π̃d+1π̃d+2 . . . π̃n(gin(I)).

Proof. Apply proposition 3.2 and proposition 3.4 inductively. □

Lemma 3.6. Let J be a monomial ideal of Borel type and 1 ≤ d ≤ n. Then Πd(J),

Φd(J) and Φd(J) are all of Borel type.

Proof. Suppose J = (u1, . . . , us), then Φd(J) = (Φd(u1), . . . ,Φd(us)). Every min-
imal generator of Φd(J) is of the form Φd(uk) for some k. Choose i such that
xi|Φd(uk) and choose j < i. Then i ≤ d because Φd(uk) is only divisible by a
subset of {x1, . . . , xd}. In this case xi|uk. Since J is of Borel type, there exist t
such that xj

tuk/xi is in J , so there is another minimal generator uk′ of J with
uk′ |xj

tuk/xi. Since j < i ≤ d,Φd(uk′)|Φd(xj
tuk/xi) = xj

tΦd(uk)/xi. This means
that Φd(J) is still of Borel type. For Πd, we have Πd(J) = (Πd(u1), . . . ,Πd(us)),
and the set of minimal generators of Πd(J) is just the set of Πd(uk) = uk’s where
Πd(uk) ̸= 0. Choose i such that xi|Πd(uk) and choose j < i. Then i ≤ d because
Πd(uk) ̸= 0 is only divisible by a subset of {x1, . . . , xd}. Then we can use the same
argument as Φd(J) to prove Πd(J) is of Borel type. The last statement is true by
the previous two statements because Φd = ΠdΦd. □

Proposition 3.7. Let J be a saturated monomial ideal of Borel type of S(n). Then

(1) πd+1π̃d+2 . . . π̃n(J) = πd+1ϕd+1 . . . πnϕn(J) = Φd(J).

(2) π̃d+1π̃d+2 . . . π̃n(J) = ϕdπd+1ϕd+1 . . . πnϕn(J) = ϕdΦd(J).

Proof. J is of Borel type and saturated, so J = Jsat = J : xn
∞ = ϕn(J) and

πn(J) = πnϕn(J), which means (1) is true for d = n− 1 and (2) is true for d = n.
It is obvious that (2) is true for d implies (1) for d − 1, so by induction it suffices

to show (1) for d implies (2) for d. By Lemma before we see Φd(J) is of Borel
type, so if (1) is true for d, then π̃d+1π̃d+2 . . . π̃n(J) = (πd+1π̃d+2 . . . π̃n(J))

sat =

(Φd(J))
sat = ϕdΦd(J), so (2) is true for d and we are done. □

4. The main theorem

This section describes restrictions on the generic initial ideal of a homogeneous
prime inside S(n).

Theorem 4.1. Let P be a homogeneous prime ideal in S(n) and J = in(P ) be the
initial ideal of P . Assume J is of Borel type, and for some 1 ≤ d ≤ n− 1 we have
Φd(J) = Πd(J) + u for some u ∈ Πd(J) : m(d). Then:

(1) Either u = 1, (x1, . . . , xd) ⊂ J , or J is generated by J ∩ k[x1, . . . , xd] and
one extra generator v.

(2) If u ̸= 1, then the extra generator v = uxe
d+1 for some e > 0.

(3) If u ̸= 1, then J is generated by monomials inside k[x1, . . . , xd+1].

Proof. Let f ∈ P such that in(f) is a minimal generator of J . We claim f is
an irreducible polynomial. If f is not irreducible, write f = f1f2, f1, f2 are not
constants. Then in(f) = in(f1)in(f2) with in(f) ̸= in(f1) or in(f2). Since P
is prime and f ∈ P , f1 ∈ P or f2 ∈ P , which implies in(f1) ∈ J or in(f2) ∈ J ,
which contradicts the minimality of in(f). Let u1, . . . , us, v1, . . . , vt be the monomial
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minimal generators of J with ui ∈ k[x1, . . . , xd], vj /∈ k[x1, . . . , xd]. Since Φd(J) ̸=
Πd(J), one of the generator does not lie in k[x1, . . . , xd], that is, t ≥ 1 and there is
at least one v1. Then Φd(ui) = ui, Φd(vj) ̸= vj . Φd(J) is generated by Φd(ui) = ui

and Φd(vj), and is minimally generated by ui, u. Φd(J) is also generated by ui, u,
viewed as a monomial ideal in S(d). For any i, j, ui does not divide vj ; but Φd(vj)
divides vj , so ui does not divide Φd(vj). But Φd(vj) ∈ Φd(J) = (u1, . . . , us, u), so
Φd(vj) ∈ (u1, . . . , us, u)\(u1, . . . , us); this forces Φd(vj) = u because u ∈ Πd(J) :
m(d) = (u1, . . . , us) : m(d). Write vj = uwj for wj ∈ k[xd+1, . . . , xn]. We have seen
t ≥ 1. If t = 1 this is the second part of (1). Suppose t ≥ 2, we claim the first
part of (1) holds. Assume v1 = uw1, v2 = uw2 are two distinct monomials minimal
generator of J . Take f1, f2 to be the elements in the reduced Gröbner basis of
P satisfying in(f1) = v1, in(f2) = v2. Every monomial appearing in f1, f2 is not
in J except their initials. By the claim at the beginning of the proof, f1, f2 are
irreducible. We can write f1 = up1 + q1, f2 = up2 + q2 such that up1 is the sum of
all terms appearing in f1 divisible by u, and q1 is the sum of all other terms; similar
for p2, q2. Then in(p1) = w1, in(p2) = w2. Besides, u ∈ (u1, . . . , us) : (x1, . . . , xd),
so any other monomial m appearing in q1 are not divisible by x1, . . . , xd, otherwise
the mu divides some ui, so it lies in J which is a contradiction. This means
p1 ∈ k[xd+1, . . . , xn]. Similarly p2 ∈ k[xd+1, . . . , xn]. Consider the polynomial
F = p2f1 − p1f2 = p2q1 − p1q2. Take any term m1 of p2 and m2 of q1. Then m1 ∈
k[xd+1, . . . , xn]. Also, m2 is not divisible by ui since the terms of q1 appears in f1,
and is not divisible by u by construction of q1. This means m2 /∈ (u1, . . . , us, u) =
Φd(J) = J : (xd+1 . . . xn)

∞. So m1m2 /∈ J . This is true for any choice of m1m2.
Similarly the product of any term of p1 and any term of q2 does not lie in J .
So any possible term of F does not lie in J = in(P ). But F ∈ P , so F = 0
and p2f1 = p1f2. Since f1 is irreducible we have f1|p1 or f1|f2. If f1|p1 then
in(f) = v1 = uw1|w1 = in(p1). This means f1 and p1 differ by a constant and
u = 1 ∈ Πd(J) : m(d), so J contains (x1, . . . , xd), and the first part of (1) holds.
Similarly if f2|p2, the first part of (1) also holds. If both of the above is false, then
f1 and f2 differ by a constant, which means v1 = in(f1) = in(f2) = v2, which is
contradictory to v1 ̸= v2. Hence (1) is proved. Suppose (2) is false, and v = uw ∈ J
where w is not a pure power of xd+1. Then xj |w for some j > d + 1. Since J is
of Borel type, there exist e > 0 such that v′ = uwxe

d+1/xj ∈ J . Pick a monomial
minimal generator v” dividing u′. v” does not divide v by minimality and v does
not divies v” by construction. Then v = uw, v” = uw”, w,w” ∈ k[xd+1, . . . , xn],
and w,w” does not divide each other, which is contradictory to the second part of
(1). (3) is a corollary of (1) and (2). □

Corollary 4.2. Let P be a homogeneous prime ideal in S(n) and J = gin(P ) be
the initial ideal of P . Assume for some 1 ≤ d ≤ n− 1 we have Φd(J) = Πd(J) + u
for some u ∈ Πd(J) : m(d). Then:

(1) Either u = 1, (x1, . . . , xd) ⊂ J , or J is generated by J ∩ k[x1, . . . , xd] and
one extra generator v.

(2) If u ̸= 1, then the extra generator v = uxe
d+1 for some e > 0.

(3) If u ̸= 1, then J is generated by monomials inside k[x1, . . . , xd+1].

Proof. The generic initial ideal of any ideal is always of Borel type. By definition
of the generic initial ideal, J = in(α(P )) for some α ∈ GLn(k) and α(P ) is still a
prime ideal in S(n), so the conclusion follows from theorem 4.1. □
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Example 4.3. The above theorem and corollary rule out some monomial ideal as
the initial ideal of a prime ideal. For example, let J = (x2

1, x1x
2
2, x1x2x3, x1x

2
3) ⊂

k[x1, . . . , xn]. Then J is of Borel type. Let d = 1, we see Φd(J) = (x1), Πd(J) =
(x2

1), and x1 ⊂ (x2
1) : (x1). However, x1 ̸= 1 and J has a minimal generator dividing

x3. So J satisfies the condition of theorem 4.1 except that it is the initial ideal of
P , and it violates the conclusion of (1), so it can not be the initial ideal or generic
initial ideal of any prime ideal.

The above result can be strengthened by replacing J with a larger ideal Φd+2(J)
using Bertini’s irreducibility theorem. First we recall the statement of the theorem:

Theorem 4.4 ([8]). Let k be an infinite field, P a homogeneous prime ideal in the
polynomial ring S, s be a positive integer, s ≤ dim(S/P ) − 2. Then for s general
linear forms l1, . . . , ls, π̃ls π̃ls−1

. . . π̃l1(P ) is still a prime ideal in S/(l1, . . . , ls).

Corollary 4.5. Let P be a homogeneous prime ideal in S(n) and J = gin(P ). As-
sume for some 1 ≤ d ≤ n−2 we have dim(S/P ) ≥ n−d and Φd(J) = ΠdΦd+2(J)+u
for some u ∈ ΠdΦd+2(J) : m. Then:

(1) J is generated by J ∩ k[x1, . . . , xd] and one extra generator v.
(2) v = uxe

d+1 for some v ∈ Πd(J) : m and e > 0.
(3) J is generated by monomials inside k[x1, . . . , xd+1].
(4) depth(S/P ) = n−d−1. If moreover dim(S/P ) = n−d then S/P is almost

Cohen-Macaulay.

Proof. If n = d + 2 this is just corollary 4.2, so we may assume n ≥ d + 3. We
choose s = n− d− 3 general linear forms l1, . . . , ls and let Ps = π̃ls π̃ls−1

. . . π̃l1(P ).
If n = d + 3 just choose Ps = P . It is a prime ideal in S(n)/(l1, . . . , ls) =
S(d + 3) because s = n − d − 3 < dim(S/P ) − 2. By proposition 3.7 gin(Ps) =

ϕd+3Φd+3(J) = Πd+3Φd+2(J). By Bertini’s irreducibility theorem Ps is a prime
ideal, so gin(Ps) = Πd+3Φd+2(J) satisfies the conclusion of (1)-(3), that is, it is
generated by monomials in x1, . . . , xd plus an extra generator v = uxe

d+1 where
u is a monomial in x1, . . . , xd. Since the generator of Φd+2(J) does not involve
xd+2, . . . , xn, the generators of Πd+3Φd+2(J) ⊂ S(d + 3) and Φd+2(J) ⊂ S(n) are
the same, and Φd+2(J) also satisfies (1)-(3) because these properties only depends
on monomial generators. Now we claim J also satisfies (1)-(3). If Φd+2(J) satis-
fies (1)-(3) but J does not, then Φd+2(J) ̸= J ; hence J has a minimal generator
v = w1w2 where w1 ∈ k[x1, . . . , xd+1], w2 ∈ k[xd+2, . . . , xn], and w2 ̸= 1. Since
J is of Borel type,there exists e > 0 such that w1x

e
d+2 ∈ J , and since w1x

e
d+2

does not involve xd+3, . . . , xn, Φd+2(w1x
e
d+2) = w1x

e
d+2 ∈ Φd+2(J). This monomial

is divisible by another minimal generator v′ of Φd+2(J); write v′ = w′
1w

′
2 where

w′
1 ∈ k[x1, . . . , xd+1], w

′
2 is a power of xd+2 which is not 1. This means Φd+2(J)

has a minimal generator involving xd+2 which is contradictory to (3), so we are
done. □

5. Difference in the Hilbert coefficients

The previous section talks about restrictions on gin(P ) for a prime ideal P .
However, the generic initial ideal of an ideal is hard to capture in practice as its
computation requires the information of some unknown α ∈ GLn(k). It would be
easier to describe the restriction using Hilbert coefficients which is totally com-
putable from the Hilbert function of the quotient ring. We want to see how the
Hilbert coefficients change after going modulo s general linear forms.
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Lemma 5.1. Let M,N be two graded modules over some polynomial ring S of
dimension r. Assume there is an exact sequence

0 → M1 → N → M → M2 → 0.

Denote dimM1 = r1,dimM2 = r2, s = max{r1, r2}. Then:

(1) r ≥ s.
(2) ei(N) = ei(M) for i < r − s.
(3) If r1 = s > r2, then er−s(N) = er−s(M) + (−1)r−se0(M1).
(4) If r1 < s = r2, then er−s(N) = er−s(M)− (−1)r−se0(M2).
(5) If r1 = s = r2, then er−s(N) = er−s(M)+(−1)r−se0(M1)−(−1)r−se0(M2).

Proof. We have dimM ≥ dimM1 and dimN ≥ dimM2 which implies (1). For the
rest statements, note that the Hilbert series is additive on short exact sequences, so
hM (t) = hN (t)+hM2(t)−hM1(t). Let hM (t) = qM (t)/(1−t)r, hM1(t) = qM1(t)/(1−
t)r1 , hM2(t) = qM2(t)/(1−t)r2 . Then hN (t) = qN (t)/(1−t)r where qN (t) = qM (t)+
qM2

(t)(1− t)r−r2 −qM1
(t)(1− t)r−r1 . Now we expand both sides in terms of powers

of t− 1 and look at the coefficients of 1, (t− 1), . . . , (t− 1)r−s. □

Now let J be a monomial ideal of Borel type in S = S(n), dim(S/J) = r, and d
is an integer satisfying d ≥ n− r. Let J1 be the ideal generated by J ∩k[x1, . . . , xd]
and J2 = Φd(J). Then J1 ⊂ J ⊂ J2 with Πd(J1) = Πd(J).

Lemma 5.2. We have:

(1) ei(S/J) = ei(S/J2) for 0 ≤ i ≤ r − n+ d;
(2) ei(S/J) = ei(S/J1) for 0 ≤ i ≤ r − n+ d− 1, and

er−n+d(S/J)− er−n+d(S/J1)

= (−1)r−n+drankk[xd+1,...,xn](J2/J1)

= (−1)r−n+d dimk Πd(J2)/Πd(J1)

which is finite.

Proof. For any 1 ≤ i ≤ n−1, Φi+1(J) ⊂ Φi(J) = Φi+1(J) : x
∞
i+1. For any monomial

u ∈ Φi(J)\Φi+1(J), by definition there is some e > 0 such that uxe
i+1 ∈ Φi+1(J).

Since J is of Borel type, so is Φi+1(J), so for any j ≤ i, there exist some e′ > 0 such

that uxe′

j ∈ Φi+1(J). This means Φi(J)/Φi+1(J) is annihilated by some power of
(x1, . . . , xi+1), so dim(Φi(J)/Φi+1(J)) ≤ n−i−1. Now consider the exact sequence

0 → Φi(J)/Φi+1(J) → S(n)/Φi+1(J) → S(n)/Φi(J) → 0.

By the argument above and lemma 5.1, we know ej(S/Φi(J)) = ej(S/Φi+1(J)) for
j < r− (n− i− 1) = r−n+ i+1, so ej(S/J) = ej(S/Φd(J)) for j ≤ r−n+ d. For
J1, by the arguement above it suffices to prove the equality if we replace J by J2.
We know S/J1 and S/J2 are both free k[xd+1, . . . , xn]-module since J1 and J2 are
generated by monomials in x1, . . . , xd. Now for any monomial minimal generator
u of J2 satisfying u /∈ J1, we know u ∈ k[x1, . . . , xd] and there exists s > 0 such
that xs

d+1u ∈ J . So xs
iu ∈ J for all 1 ≤ i ≤ d. By definition of J1, x

n
i u ∈ J1 for

such i. This means that J2 ⊂ J1 : (x1, . . . , xd)
∞. So J2/J1 is a free S(d)-module

of finite rank. It has dimension exactly d and e0(J2/J1) = rankS(d)(J2/J1) =
dimk(Πd(J2)/Πd(J1)). So apply lemma 5.1 to the exact sequence 0 → J2/J1 →
S/J1 → S/J2 → 0 we know ei(S/J2) = ei(S/J1) for 0 ≤ i ≤ r − (n − d) − 1 and
er−n+d(S/J2) = er−n+d(S/J1) + (−1)r−n+de0(J2/J1). □
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Lemma 5.3. Let J be a monomial ideal of Borel type in S(n) with dim(S/J) ≥
n− d. Then Φd(J) = Πd(J) + u for some u ∈ Πd(J) : m(d) if and only if

rankk[xd+1,...,xn](J2/J1) = dimk(Πd(J2)/Πd(J1)) = 1.

Proof. Since J2 and J1 are both free k[xd+1, . . . , xn]-modules, their quotient is a
free k[xd+1, . . . , xn]-module of rank 1 if and only if after modulo (xd+1, . . . , xn) the
quotient is a one dimensional k-vector space, if and only if Φd(J)/Πd(J) = k. □

Theorem 5.4. Let P be a homogeneous prime ideal in S(n), dimS(n)/P = r.
Take 1 ≤ s ≤ r, and let d = n− s. choose s general linear forms l1, . . . , ls. Denote
P1 = πl1 . . . πls(P ) ⊂ S(d). Suppose ei(S/P ) = ei(S/P1) for 1 ≤ i ≤ r − s− 1 and
er−s(S/P ) = er−s(S/P1) + (−1)r−s, then depth(S/P ) = n− d− 1.

Proof. Let J = gin(P ). Denote J1, J2 as before. Then J1 = gin(P1) by proposi-
tion 3.5. Now taking generic initial ideal does not change the Hilbert series, so the
Hilbert coefficients are the same, so we have ei(S/J) = ei(S/J1) for 1 ≤ i ≤ r−s−1
and er−s(S/J) = er−s(S/J1) + (−1)r−s. Since s = n − d, by lemma 5.3 we know
Φd(J) = Πd(J) + u for some u ∈ Πd(J) : m(d). Now by theorem 4.1 we know
depth(S/P ) = n− d− 1. □

6. Simple cases and case where n− d = dim(S/P )

We can also talk about the generic initial ideal of a prime ideal when this prime
is very simple.

Proposition 6.1. Let n ≥ 3 and J be a monomial ideal in S(n). Then there exists
a prime ideal P of S such that J = gin(P ) for some height 1 prime if and only if
J = xe

1 for some e > 0.

Proof. Since S(n) is a UFD, a height 1 prime is just a principle ideal generated
by an irreducible ideal f . Now for general linear change of coordinate α, in(αf) =

x
deg(f)
1 . Conversely for any degree d, we have a polynomial xd

1 − xd−1
2 x3. Apply

the Eisenstein criterion for the ideal (x3) we know it is irreducible, and its generic
initial monomial is just xd

1. □

Corollary 6.2. Let J = gin(P ). Suppose ht(J) = 1, then J = xe
1 for some e > 0.

Proof. dim(S/P ) = dim(S/J) = n− 1. So ht(P ) = 1 because S(n) is catenary and
P is a prime. The rest follows by proposition 6.1.

If we assume dim(S/P ) = n − d in the previous theorems we will get some
interesting results. In this case we have the following property: □

Proposition 6.3. Let dim(S/P ) = n− d, J = gin(P ), then:

(1) x1, . . . , xd ∈
√
J and xd+1, . . . , xn /∈

√
J .

(2) R = k[xd+1, . . . , xn] is a Noether normalization of S/P and S/J .
(3) S/Φd(J) is free over R and Φd(J)/J is R-torsion.
(4) deg(S/P ) = deg(S/J) = rankR(S/J) = rankR(S/Φd(J)) = dimk(S/Φd(J)+

(xd+1, xd+2, . . . , xn)).

Now in this case, r−n+d = 0, so by lemma 5.2 and lemma 5.3, Φd(J) = Πd(J)+u
if and only if deg(S/Φd(J)) + 1 = deg(S(d)/Πd(J)). We can say in this case we
have exactly one more degree after applying Φd. So by theorem 4.1 we have:
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Theorem 6.4. Let P be a prime ideal in S = S(n), dim(S/P ) = n−d, J = gin(P ),
and J satisfies deg(S/Φd(J)) + 1 = deg(S(d)/Πd(J)). Then J is generated by
monomials in k[x1, . . . , xd+1] and xd+1 appears in the minimal generator of J .
Moreover, depth(S/P ) = n− d− 1 and S/P is almost Cohen-Macaulay.

Remark 6.5. This is a generalization of a lemma in Kwak’s paper [2], Theorem 5.1
where we have S(d)/Πd(J) = S(d)/m(d)r+1. Here r is the reduction number of
S/P .
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